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1. Introduction

The correspondence between supergravity in anti-de Sitter(AdS) spacetime and conformal

field theory in one lower dimension is one of the interesting subjects of current research. It

has been conjectured [1] by Maldacena that the type IIB supergravity (superstring theory)

on AdS5 × S5 is dual to the the N = 4 super Yang-Mills theory living on the boundary

of the AdS space. The conjecture also relates thermodynamics of the gauge theory on

conformal boundary of the AdS space with that of the gravity residing in the bulk AdS.

We will first review thermodynamics of the gauge theory on a three sphere S3. To

compute the free energy or entropy of the finite temperature gauge theory, we have to

first calculate the partition function on S3 × S1, where S1 is the Euclidean time circle.

The circumference β of S1 is related to the inverse temperature of the field theory and

we denote the radius of S3 as β′. Due to the conformal invariance of the gauge theory on

S3 × S1, only the ratio of these two parameters β/β′ is relevant.

Phase transition is one of the important aspects in the study of thermodynamics. A

system in the finite volume, in general, does not exhibit any phase transition. But in

the large N limit, i.e., when the number of degrees of freedom goes to infinity then it is
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possible to have a phase transition even in finite volume [2]. It has been argued in [3] that

the N =4 SYM theory on S3 × S1 shows a phase transition as a function of β/β′ in large

N limit. The large β/β′ or small temperature phase corresponds to the confining phase

where small β/β′, i.e., the large temperature phase corresponds to de-confining phase of

the gauge theory.

On the gravity side Hawking and Page had shown in [4] that there exists a phase

transition (HP phase transition) between spherical AdS (Schwarzschild) black hole and

and global AdS spacetime. Above the transition temperature (Hawking-Page transition

temperature), the black hole spacetime is stable while below that temperature the black

hole spacetime is unstable and decays to the global AdS space time.

Using the AdS/CFT correspondence, Witten has identified the Hawking-Page phase

transition in gravity side with the confinement-deconfinement phase transition in the gauge

theory [3, 5]. The low temperature phase on the gravity side which is dominated by global

AdS spacetime corresponds to the confining phase of gauge theory while the high temper-

ature phase where AdS black hole is energetically favored corresponds to the deconfining

phase of the gauge theory.

The phase transition, both on the gravity side and on the gauge theory side, is sensitive

to the topology of spacetime. For example, instead of spherical asymptotic geometry if

one considers AdS black holes with planar asymptotic geometry then it is easy to show

that there exists no HP transition between this black hole phase and the global AdS

spacetime. In other words, the planar black hole phase is always dominant for any non

zero temperature. On the other hand dual thermal gauge theory of this planar black hole,

which is defined on S1 × R3 also does not show any phase transition. The gauge theory is

always in deconfined phase. This can be understood from the fact that planar geometry

can be obtained from spherical geometry in β′ → ∞ limit and in this limit β/β′ → 0.

The obvious question to ask here is, what happens when the black hole spacetime has

asymptotic topology other than S1 × S3 or S1 × R3? We will try to address this question

in the context of charged black holes in this paper.

To answer this question we have to first find out what kind of black hole topologies

one can have in asymptotically AdS space. In fact, it is possible to construct a black hole

solution of Einstein equation with positive (spherical), zero (flat) or negative (hyperboloid)

constant curvature horizons in AdS spacetime [6]. Due to different horizon topologies, the

thermodynamic properties of these black holes are different. We will be focusing on black

holes with flat horizon. It has been shown in [7, 8] that there are no phase transitions

between the AdS black hole with Ricci flat horizon and the zero mass black hole (global

AdS spacetime) 1 2.

1It is worth mentioning here that in studying the thermodynamics of Euclidean black hole a proper

background subtraction is essential to get finite thermodynamic variables. One also has to ensure that the

boundary topology of black hole spacetime and that of the background spacetime are same asymptotically

(see [9] for an explicit discussion). For example, in asymptotically AdS space if we want to study the

thermodynamics of AdS-Schwarzschildblack hole then the background we choose is asymptotically pure

AdS spacetime.
2see [10] for related discussion in de-Sitter space and [11] for topological black holes with hair.
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However, in [12], the authors have shown that it is possible to find a phase transition

between Ricci-flat black holes and a AdS soliton spacetime where both the spacetime

has asymptotic geometry is S1 × S1 × R2 ( S1 × R2 is the Ricci-flat space) 3. It has

been conjectured by Horowitz and Myers [13] that given the Ricci-flat boundary topology

S1 × S1 × R2 the AdS soliton spacetime is the minimum energy (perturbatively stable)

solution of the Einstein equation. We will review briefly this conjecture of Horowitz and

Myers and the phase transition between neutral black holes and AdS soliton spacetime in

section 2.

Our main focus in this paper will be to generalize this analysis to charged black holes.

Thermodynamics of charged black holes typically has more interesting features than the

neutral ones. Lower dimensional charged black holes in the AdS space can arise in the

compactification of string theory on Sn+1. One simple way to get a charged black hole

solution in lower dimensions (say, in 5 dimensions) is by compactifying the string theory

(type IIB) on a rotating sphere (i.e., S5 in this case) [22, 20]. In this paper, we will discuss

the thermodynamics of Ricci flat charged black holes and phase transition between the

black hole and AdS soliton spacetime.

Organization of our paper is as follows. In section 2 we briefly review the AdS soliton

spacetime (section 2.1) and phase transition of neutral Ricci flat black holes (section 2.2). In

the next section (section 3) we discuss the thermodynamics of charged Ricci-flat black holes

in the grand canonical ensemble and study phase transition into AdS soliton spacetime.

We show that the phase transition line depends on the size of the spatial S1 circle. We also

discuss the thermodynamic stability of these black holes in section 4. The last section 5

contains discussion of our results. The detailed calculation leading to the on-shell Euclidean

action for general R-charged black holes is given in the appendix A.

2. AdS soliton spacetime and phase transition of Ricci-flat black holes

In this section we briefly review the work of Horowitz and Myers [13] and discuss how

asymptotically Ricci flat black hole undergoes a phase transition into the AdS soliton

spacetime [12].

2.1 AdS soliton spacetime

The AdS soliton spacetime is given by the metric,

ds2
S = −r2

b2
dt2S +

b2

r2

(

1 − µ4

r4

)−1

dr2 +
r2

b2

(

1 − µ4

r4

)

dθ2
S +

r2

b2
hijdxidxj , (2.1)

where, b is radius of the AdS spacetime, µ is a constant parameter related to the energy of

this spacetime and hij is the metric on a two dimensional Ricci-flat manifold R2/Γ, where

Γ is a finite discrete group. This two dimensional manifold Y2 can be a torus T2 for some

non-trivial Γ or in the simpler case it is R2. We will consider Y2 to be R2 throughout

3Higher derivative correction to the phase transition of Ricci flat neutral black hole has been studied

in [14] and in a recent paper [15].
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this paper. This metric can be obtained as a solution of the Einstein equation (which

is obtained by varying the Einstein-Hilbert action with negative cosmological constant).

The metric can also be obtained by a double analytic continuation of a five dimensional

Ricci-flat AdS black hole metric with t → iθS and θ → itS (see [16] for related discussion),

ds2 = −r2

b2

(

1 − µ4

r4

)

dt2 +
b2

r2

(

1 − µ4

r4

)−1

dr2 +
r2

b2
dθ2 +

r2

b2
hijdxidxj . (2.2)

In (2.1) the coordinate r is restricted to r ≥ µ and θS must be identified with period,

ηS =
πb2

µ
(2.3)

so as to avoid the conical singularity at r = r0. The soliton spacetime XS has a topology

R × B2 ×Y2, where B2 is a two dimensional ball and Y2 is either T2 or R2 as mentioned

above. Boundary MS of this soliton spacetime has the topology of R × S1 × Y2.

The AdS soliton spacetime has negative energy and it is given by,

ES = − V b3π3

16πG5η3
S

, (2.4)

where V =
∫
√

hd2x. We can write this energy in terms of gauge theory variables using

the AdS/CFT dictionary,

b4 =
N
√

2G10

π2
,

G5 =
G10

V ol(S5)
(2.5)

as,

ES = −V π2N2

8η3
S

. (2.6)

The energy density of this spacetime then becomes,

ρS =
E

V ηS
= −π2N2

8η4
S

. (2.7)

Using the AdS/CFT correspondence we can compare the energy density of this soliton

spacetime with the ground state energy of the dual field theory on S1 × Y2 where the

length of S1 is ηS. Here the field theory is N=4 SYM theory with SU(N) gauge group.

The fermions are antiperiodic on S1. To compare the result obtained on the gravity side, we

need to determine the Casimir energy of the weekly coupled gauge theory on the boundary

of AdS soliton spacetime with the same boundary condition for fermions in S1 direction.

When Y2 = R2, the leading order result for the Casimir energy density is given by4 [17],

ρgauge = −π2N2

6η4
S

. (2.8)

4The general case, i.e., when the boundary topology is R×T
3 or R

2
×T

2 rather than R
3
×S

1 has been

studied in [18].
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Thus the negative energy density of the AdS soliton spacetime is precisely 3/4 of the

Casimir energy of the zero coupling gauge theory. The discrepancy of a factor 3/4 reflects

the fact that two results apply in different regime of the dual gauge theory.

The above agreement is in favor of AdS/CFT correspondence in a non-supersymmetric

case. But, the important question is whether the AdS soliton solution (2.1) is the lowest

energy stable solution of the Einstein equations for the given boundary topology. On the

basis of the stability of the non-supersymmetric field theory on S1 × Y2 together with

the help of AdS/CFT correspondence, Horowitz and Myers have conjectured that the AdS

soliton solution (2.1) is the minimum energy solution of the Einstein equations with that

boundary condition. Any other solution with this boundary condition has positive energy

with respect to (2.4). They have also shown that the candidate minimum energy solution

is stable against all quadratic fluctuations of the metric.

2.2 Phase transition of Ricci-flat black hole

We shall now review how Ricci-flat black holes undergo a phase transition into the AdS

soliton spacetime [12]. The Ricci-flat black hole metric is given by,

ds2 = −r2

b2

(

1 − r4
0

r4

)

dt2 +
b2

r2

(

1 − r4
0

r4

)−1

dr2 +
r2

b2
dθ2 +

r2

b2
hijdxidxj , (2.9)

where r0 is the position of the horizon and the periodic coordinate θ has a period η. Both

the black hole metric and the AdS soliton metric are obtained varying the action,

I = − 1

16πG5

∫

d5x
√−g

(

R +
12

b2

)

. (2.10)

To study the thermodynamics of this black hole spacetime one has to go to the Eu-

clidean theory by a Wick rotation t → iτ . The Euclidean metric is given by,

ds2 =
r2

b2

(

1 − r4
0

r4

)

dτ2 +
b2

r2

(

1 − r4
0

r4

)−1

dr2 +
r2

b2
dθ2 +

r2

b2
hijdxidxj (2.11)

for the black hole spacetime and

ds2
S =

r2

b2
dτ2

S +
b2

r2

(

1 − µ4

r4

)−1

dr2 +
r2

b2

(

1 − µ4

r4

)

dθ2
S +

r2

b2
hijdxidxj (2.12)

for the soliton spacetime. The regularity of black hole spacetime at r = r0 demands that

the Euclidean time coordinate τ of the black hole is identified with period,

β =
πb2

r0
, (2.13)

where the Euclidean time coordinate τS of the soliton space time has an arbitrary period

βS . It is worthwhile to mention here that 1/β and 1/βS are the temperature of the black

hole and soliton spacetime respectively.

We will now discuss the phase transition between the black hole spacetime and the AdS

soliton spacetime. Given the boundary geometry R× S1 × R2 there are three solutions to
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the Einstein equations derived from the action (2.10). (a) Black hole spacetime (2.9), (b)

soliton spacetime (2.1) and (c) global AdS spacetime, whose metric is given by,

ds2
AdS = −r2

b2
dt2AdS +

b2

r2
dr2 +

r2

b2
dθ2

AdS +
r2

b2
hijdxidxj. (2.14)

If we compute the on-shell action or free energy for black hole spacetime with respect

to global AdS spacetime we find no signature of phase transition, i.e., the black hole

spacetime is always dominant over the global AdS spacetime. Similarly there exists no

phase transition between the AdS soliton and the global AdS. The black hole free energy

is given by,

FB = −π3b6V

16G5

η

β3
(2.15)

and the soliton free energy is given by,

FS = −π3b6V

16G5

βS

η3
S

, (2.16)

where, we have used the global AdS as a reference point in both cases. Boundary topology

must be the same for the black hole spacetime, the soliton spacetime and the global AdS

spacetime, in order to compare them. Now if we compare the free energy of black hole

spacetime and soliton spacetime then we can see that depending on the relative size of

boundary S1 circles, the bulk spacetime is dominated by either black hole phase or the

AdS soliton phase. So, in order to find possible phase transition between the black hole

and the AdS soliton we have to compute the difference between black hole on-shell action

(or free energy) and soliton on-shell action (or free energy).

The next step is to compute the difference between the on-shell black hole action and

on-shell soliton action with the condition that the asymptotic boundary geometry of the

black hole spacetime is same with that of soliton spacetime. This identification implies

that,

β

√

gτBτB
(R̃) = βS

√

gτSτS
(R̃),

ηS

√

gθSθS
(R̃) = η

√

gθBθB
(R̃), (2.17)

where, R̃(→ ∞) is the position of the boundary hypersurface. Another important thing

we should mention here is that integration over the radial coordinate r ranges from r0 to

R̃ for black hole spacetime and µ to R̃ for soliton spacetime. We will eventually take limit

R̃ → ∞ at the end of our calculations. We can now calculate the regularized or subtracted

action, which is given by,

I =
[

IB(R̃) − IS(R̃)
]

R̃→∞

=
β ηS V

16πG5

(

µ4

b2
− r4

0

b2

)

, (2.18)

where

V =

∫ √
hdx1dx2. (2.19)
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Figure 1: Black Hole - Soliton Phase transition

Hence the free energy is,

F = β−1I

=
ηS V

16πG5

(

µ4

b2
− r4

0

b2

)

=
ηS V

16πG5

r4
0

b2

(

µ4

r4
0

− 1

)

. (2.20)

We see that free energy is negative for r0 > µ and positive for r0 < µ, signaling a phase

transition. One can also express the free energy in terms of the temperature and the

horizon area (size) of the black hole. It is easy to find the ratio,

AB

T 2
∼ r0

µ
, (2.21)

where AB is the area of the black hole horizon. It is obvious from equations 2.20 and (2.21)

that the phase transition depends not only on the temperature of the black holes but also

on the size of the black holes unlike the usual HP transition for spherical black holes where

it completely depends on the temperature. The result can be summarized as follows. There

are three phases in the bulk spacetime corresponding to a given boundary topology: the

black hole phase, the global AdS phase and the AdS soliton phase. First and third phase

are always dominant over the second one. But when boundary Euclidean time circle is

less than the size of spatial S1 the black hole phase dominates in bulk otherwise the AdS

soliton phase dominates, see figure 1.

Although discussing the phase transition was the main goal of this section, for com-

pleteness we will also write the expressions for thermodynamic variables, energy and en-

tropy. Using the following thermodynamic relations,

E =
∂I

∂β
,

S = βE − I, (2.22)

– 7 –
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we find the energy and entropy as follows,

E =
V ηS

16πG5b2

(

3r4
0 + µ4

)

,

S =
AB

4G5
. (2.23)

It is clear that energy is always positive with respective to the soliton.

We will conclude this section by mentioning the correspondence between this phase

transition (in the bulk) and the phase transition of dual gauge theory on the bound-

ary. For complete discussion the reader is referred to the original paper [12]. The stable

black hole phase r0 > µ corresponds to de-confined phase of the thermal gauge theory on

S1 × S1 × R2 and the stable soliton phase r0 < µ corresponds to confined phase of the

thermal gauge theory on S1 × S1 × R2. It is important to mention here that only the an-

tiperiodic spin structure (Tre−βH) in both the S1 directions undergoes the large N phase

transition.

3. Phase transition of charged black holes

So far we have seen that neutral Ricci-flat AdS black holes undergo a phase transition into

a global soliton spacetime. Therefore, it would be interesting to generalize this idea to the

case of charged black holes.

Electrically charged black holes in five dimensions have drawn a lot of interest in the

context of AdS/CFT. The electric charge of these black holes are mapped to the global

R-charge of the dual field theory. Because of the presence of the electric charges, the

thermodynamics and the phase structure of these black holes are rather complicated and

also interesting at the same time. There have been a lot of study of thermodynamics and

phase transitions of these charged black hole with different horizon topologies (see [19 –

21] and references therein). But it seems that the study of thermodynamics and phase

transition between charged Ricci-flat black holes and AdS soliton spacetime are yet to be

explored. In this section we will shed some light on these issues.

We will first briefly discuss how charge black holes can arise in five dimensions in the

context of string theory. A consistent truncation of N = 8, D = 5 gauged supergravity

with SO(6) Yang-Mills gauge group, which can be obtained by S5 reduction of type IIB

supergravity, gives rise to N = 2, D = 5 gauge supergravity with U(1)3 gauge group. The

same theory can also be obtained by compactifying eleven dimensional supergravity, low

energy theory of M theory, on a Calabi-Yau three folds. The bosonic part of the action of

N = 2, D = 5 gauged supergravity is given by,

Isugra =

∫

d5x
√−g

(

R

16πG5
+

V (X)

b2
− 1

2
GIJ(X)∂µXI∂µXJ − 1

4
GIJ (X)F I

µνFµν J

)

+ C.S. terms, (3.1)

where, XI ’s are three real scalar fields, subject to the constraint X1X2X3 = 1. F I ’s are

field strengths of three Abelian gauge fields (I,J=1,2,3). The scalar potential V (X) is given

– 8 –
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by,

V (X) = 2

(

1

X1
+

1

X2
+

1

X3

)

. (3.2)

The metric on the scalar manifold GIJ is given by,

GIJ(X) =
1

2
diag

(

1

(X1)2
,

1

(X2)2
,

1

(X3)2

)

. (3.3)

The solution of this action is specified by the following metric,

ds2
sugra = −(H1H2H3)

−2/3fdt2 + (H1H2H3)
1/3 dr2

f
+ (H1H2H3)

1/3 r2

b2
dΩ2

k,

(3.4)

where

f = k − M

r2
+

r2

b2
H1H2H3, HI = 1 +

q̃I

kr2
, (3.5)

The three real scalar fields XI ’s and gauge potentials AI
µ’s are of the form,

XI = H−1
I (H1H2H3)

1/3, AI
t = −

√

kq̃I(q̃I + M)

kr2 + q̃I
+ ΦI , (3.6)

where ΦI ’s are constants. k = 1, 0,−1 corresponds to black holes with spherical, Ricci-flat

and hyperboloid horizon topology respectively. We are interested in k=0 case. This is done

by taking the limit k → 0 , q̃I → 0 with qI = q̃I/k fixed. Then the solution becomes,

ds2
sugra,k=0 = −(H1H2H3)

−2/3fdt2 + (H1H2H3)
1/3 dr2

f
+ (H1H2H3)

1/3 r2

b2
dθ2

+(H1H2H3)
1/3 r2

b2
d~x2,

f = −M

r2
+ g̃2r2H1H2H3, (3.7)

XI = H−1
I (H1H2H3)

1/3,

AI
t = −

√
qIM

r2 + qI
+ ΦI ,

where θ is an angular coordinate with period η. We will choose ΦI ’s in such a way that

the gauge potential vanishes on the horizon r0,

ΦI =

√
qIM

r2
0 + qI

, (3.8)

where horizon radius r0 is given by the solution of the following equation,

f(r0) = 0. (3.9)

It turns out that asymptotic values ΦI ’s of gauge fields AI ’s behave as chemical potential

when we consider the black hole thermodynamics in grand canonical ensemble.

– 9 –
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At this point we would like to add a remark that k = 0 three charge AdS black holes

of N = 2 gauged supergravity in D = 5 can be embedded in D = 10 as a solution that is

precisely the decoupling limit of the rotating D3 brane [20, 22].

One special case, namely three equal charge case (q1 = q2 = q3 = q), of this black hole

solution is actually the same as the AdS-Reissner-Nordström black hole solution described

in equations (3.11)–(3.13). In this case scalar fields become constant and the scalar poten-

tial in the action reduces to a constant value. The action becomes the Einstein-Maxwell

action in the AdS spacetime. Though the metric looks somewhat different than usual

AdS-Reissner-Nordström black hole metric, after a suitable coordinate transformation one

can write this metric in usual Schwarzschild coordinate. It is important to mention here

that although AdS-Reissner-Nordström black holes and three equal charge R-charged back

holes show the same kind of phase transition, their local stability behavior is somewhat

different from each other. We will discuss these issues later in this paper.

In the next subsection we discuss phase transition and thermodynamics of Ricci-flat

AdS-Reissner-Nordström black hole, which is somewhat simpler than general R-charge

black hole, and will be a warm-up example. In subsection 3.2 we will focus on general

R-charge black holes.

3.1 AdS-Reissner-Nordström black holes

AdS-Reissner-Nordström black holes are the solution of field equations governed by the

Einstein-Maxwell action with negative cosmological constant. The action is given by,

I = − 1

16πG5

∫

d5x
√−g

(

R +
12

b2
− F 2

)

. (3.10)

The solution is specified by the a metric and a gauge field. The metric is given by,

ds2 = −V (r)dt2 +
dr2

V (r)
+

r2

b2
dθ2 +

r2

b2
(dx2

1 + dx2
2), (3.11)

where V (r) is given by,

V (r) = −m

r2
+

q2

r4
+

r2

b2
, (3.12)

and m and q are two constants of integration (parameters). Later we will relate them to

the ADM mass and physical charge of the black hole respectively. The gauge field is given

by,

A(r) =

(

−1

c

q

r2
+ Φ

)

dt, (3.13)

where c = 2/
√

3 and Φ is constant. We will choose Φ in such a way that A(r0) = 0 and

this gives

Φ =
1

c

q

r2
0

. (3.14)

where r0 is the position of horizon and is given by the solution of the following equation,

V (r0) = 0.
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The coordinate θ is periodic and has a period η. This five dimensional spacetime (X) has

a conformal boundary M = R × S1 × R2.

In order to consider thermodynamics of this black hole in the classical limit we will work

with the Euclidean theory which is obtained by a Wick rotation t → iτ . The Euclidean

metric is given by,

ds2 = V (r)dτ2 +
dr2

V (r)
+

r2

b2
dθ2 +

r2

b2
(dx2

1 + dx2
2) (3.15)

and the gauge field becomes,

Aτ = i

(

− q

cr2
+

q

cr2
0

)

(3.16)

The Hawking temperature of the black hole is given by,

T =
2r6

0 − q2b2

2πb2r5
0

(3.17)

We will now calculate the on-shell black hole action, (3.10), which is given by,

IB =
β η V

16πG5b3

(

2(R̃4 − r4
0)

b2
− 2q2

r2
0

)

, (3.18)

where R̃ is the cutoff in the radial direction and V =
∫

dx1dx2 (2.19). As R̃ → ∞, the

on-shell action equation (3.18) diverges. To study the phase transition between the black

hole and AdS soliton we will subtract the contribution of the AdS-soliton from black hole

action and it will also regularize the onshell action.

As we mentioned earlier given the boundary topology to be R×S1 ×R2 (Lorentzian),

the AdS-Soliton is conjectured to be the minimum energy solution of the action (3.10).

The solution is given by a constant gauge field and a metric (2.1),

ds2
S = −dt2S +

dr2

VS(r)
+ VS(r)dθ2

S +
r2

b2
(dx2

1 + dx2
2) (3.19)

where

VS(r) =
r2

b2

(

1 − µ4

r4

)

. (3.20)

The coordinate θS has period,

ηS =
πb2

µ
. (3.21)

The Euclidean soliton metric is given by (2.12),

ds2
S =

r2

b2
dτ2

S +
dr2

VS(r)
+ VS(r)dθ2

S +
r2

b2
(dx2

1 + dx2
2), (3.22)

where τS can have an arbitrary period βS . Now we can calculate the on shell AdS-Soliton

action which is given by,

IS =
βS ηS V

16πG5b3

(

2(R̃4 − µ4)

b2

)

. (3.23)
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Before subtracting the AdS-Soliton contribution from the black hole contribution we should

remember that in order to match the boundary geometry of black hole spacetime to that

of the soliton spacetime we have the relations (2.17),5 which in the present case reduces to

β

√

V (R̃) =
R̃

b
βS ,

βS = β

(

1 − m b2

2R̃4

)

(3.24)

and

ηS

√

VS(R̃) =
R̃

b
η,

η = ηS

(

1 − µ4

2R̃4

)

. (3.25)

Using these relations we can now calculate the regularized or subtracted action,

I =
[

I(R̃) − I(R̃)
]

R̃→∞

=
β ηS V

16πG5

(

µ4

b2
− 2q2

r2
0

− 2r4
0

b2
+ m

)

=
β ηS V

16πG5

(

µ4

b2
− q2

r2
0

− r4
0

b2

)

. (3.26)

And hence the Gibbs free energy is given by,

G = TI

=
ηS V

16πG5

(

µ4

b2
− q2

r2
0

− r4
0

b2

)

. (3.27)

3.1.1 Thermodynamics

In this subsection we will discuss the thermodynamics of AdS-Reissner-Nordström black

holes. There are two kinds of ensembles one can use to describe the thermodynamics of

a charged black hole system. (i) Canonical ensemble - where temperature of the system

is fixed but energy can flow between the system and the heat bath. (ii) Grand canonical

ensemble - where temperature and the electric potential are fixed and energy and charge

can flow.

In this paper we will study thermodynamics considering the system in a grand canonical

ensemble, since it is interesting in the context of AdS/CFT.

A state in grand-canonical ensemble is characterized by (inverse) temperature β and

electric potential Φ. In the grand-canonical ensemble the Gibbs potential is given by,

G =
I

β
= E − TS − ΦQ, (3.28)

5In addition to these relations we also have to identify the chemical potential of black hole spacetime

to that of soliton spacetime. Since AdS soliton is a solution of the Einstein equations with constant gauge

potential, we can assign any chemical potential for this spacetime.
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Figure 2: Phase transition curves (equation 3.34) in q − r0 plane for AdS-Reissner-Nordström

black hole. Three different curves for three different values of µ. As we increase the value of µ

corresponding phase transition curves go away from the r0 axis.

where E is the energy, S is the entropy and Q is physical charge of the system. Using the

above relation we may compute the variables of the system as follows,

E =

(

∂I

∂β

)

Φ

− Φ

β

(

∂I

∂Φ

)

β

,

S = β

(

∂I

∂β

)

Φ

− I,

Q = − 1

β

(

∂I

∂Φ

)

β

. (3.29)

Together, they satisfy the first law,

dE = TdS + d(ΦQ). (3.30)

Using the Euclidean action (equation 3.26) and the above relations we compute the ther-

modynamic variables as follows,

E =
V ηS

16πG5

(

3m +
µ4

b2

)

, (3.31)

S =
1

4G5

V ηSr3
0

b3
=

A

4G5
, (3.32)

Qphy =

√
3

4πG5

V ηS

b3
q. (3.33)

Equation (3.31) shows that the energy is always positive with respect to the soliton energy.

3.1.2 Phase transition

Clearly the Gibbs free energy (3.27) carries the signature of phase transition. When G < 0

the black hole phase dominates. On the other hand, when G > 0, the black hole phase is

– 13 –



J
H
E
P
0
7
(
2
0
0
7
)
0
4
7

Figure 3: Ttran Vs Φ Plot for AdS-Reissner-Nordström black hole. Different curves correspond to

different µ. For smaller value of µ the corresponding phase transition curves are closer to origin.

When T > Ttran BH spacetime has dominant contribution to Euclidean path integral

unstable and decays to the soliton. Once we fix the size of the boundary spatial circle, i.e.,

fixed η (and so fixed ηS or µ), the phase transition curve depends on the charge ’q’ and

the size of the black hole ’r0’. Conditions are given by the following relations,

r6
0 − µ4r2

0 + q2b2 > 0 black hole phase dominates,

r6
0 − µ4r2

0 + q2b2 < 0 AdS soliton phase dominates. (3.34)

Since a system in grand-canonical ensemble is specified by its temperature and chem-

ical potential, it would be interesting to plot the phase transition diagram in T −Φ plane.

For a given chemical potential Φ, the temperature can be written as,

T =
3r2

0 − 2b2Φ2

3πb2r0
. (3.35)

Using the relation 3.34, we can write the relation between transition temperature Ttran,

chemical potential Φ and µ,

Ttran =

√

−4b2Φ2 +
√

16b4Φ4 + 36µ4

6

1

πb2

−2Φ2

3π

(

−4b2Φ2 +
√

16b4Φ4 + 36µ4

6

)−1/2

. (3.36)

Figure 3 depicts how transition temperature changes with chemical potential Φ for different

µ.

We will end this subsection briefly mentioning the effect of Gauss-Bonnet term to the

action 3.10. The solution is give in [23]. Since Gauss-Bonnet term does not change the

thermodynamics (energy, entropy and physical charge) for Ricc-flat black holes we are not

presenting the details of our result here. Phase transition condition also does not receive
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any correction in presence of the Gauss-Bonnet term in the action. One can check that the

functional dependence of free energy (which is proportional to difference between on shell

black hole action and on shell soliton action) on charge q horizon radius r0 and radius of

boundary spatial circle is same as equation 3.27, only the over all coefficient changes.

3.2 R-charge black holes

In this subsection we will focus on phase transition of D = 5 R-charge black holes. First

we will give a general expression of free energy for any arbitrary three charge case. In order

to study the phase transition and stability we will focus on three different limits, (i) one

charge case, i.e., q1 = q, q2 = q3 = 0, (ii) two equal charge case, q1 = q2 = q, q3 = 0 and

(iii) three equal charge case, q1 = q2 = q3 = q.

In order to calculate free energy for these black holes we will follow same steps as

in the last subsection. But here we will encounter a subtlety. In the previous case both

the black hole and the soliton metric were written in Schwarzschild coordinate and hence

we had calculated both the on-shell action and the background action keeping in mind

relations (3.24) and (3.25). But in this case the black hole metric (3.4) is written in the

“isotropic coordinates” but the soliton metric (2.1) is written in the usual Schwarzschildco-

ordinates. So either we have to write the black hole metric in the Schwarzschild coordinate

by suitably changing the coordinates and redefining the parameters or we can write the

soliton metric in the isotropic coordinate by redefining the coordinate as follows,

r2 → r2(H1H2H3)
1

3 . (3.37)

We shall follow the second approach. After this coordinate change the soliton metric

becomes,

ds2
S = −r2

b2
(H1H2H3)

1/3dt2S +
b2

r2

(

1 −
q1
H1

+ q2
H2

+ q3
H3

3r2

)2
(

1 − µ4

r4(H1H2H3)2/3

)−1

dr2

+
r2

b2
(H1H2H3)

1/3

(

1 − µ4

r4(H1H2H3)2/3

)

dΘ2
S +

r2

b2
(H1H2H3)

1/3d~x2. (3.38)

The periodicity ηS of the compact direction θS remains same as (2.3). We will now

compute the on-shell black hole action (3.1) and subtract contribution of the global soliton

action from this to get finite or renormalized on-shell action. In this case, unlike the AdS-

Reissner-Nordström spacetime, the Gibbons-Hawking boundary (GH) terms also give a

finite contribution to the on-shell action.

To study thermodynamics and phase transition we have to go to the Euclidean space

by Wick rotation t → iτ . The inverse Hawking temperature of the black hole is given by,

β =
2πb2r2

0

√

(r2
0 + q1)(r2

0 + q2)(r2
0 + q3)

2r6
0 + r4

0(q1 + q2 + q3) − q1q2q3
. (3.39)

Detailed derivation of the on-shell action has been given in appendix A. Here we will

only write the result (from here we will work in b = 1 unit for simplicity).

I = − βV ηS

16πG5

(

M +
2

3
((q2

1 + q2
2 + q2

3) − (q1q2 + q2q3 + q3q1)) − µ4

)

. (3.40)
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Using this regularized action if we calculate mass of these black holes, an unexpected

nonlinear term involving charges appears [24]. There is nothing inherently wrong in the

nonlinear appearance of charge in the expression of mass but it can contradict the expected

BPS inequality between the charge and the mass. Liu and Sabra [25] pointed out that

inclusion of a finite counterterm can resolve that problem. The counterterm they proposed

is,

IC =
1

8πG5

∫

d4x
√
−h~φ2, (3.41)

where ~φ is related to three scalar fields in the following way,

XI = e−
1

2
~aI .~φ,

with the condition, ~aI .~aJ = 4δIJ − 4/3 [22]. It is straightforward to check that using this

field redefinition, the counterterm becomes,

IC =
βV ηS

16πG5

(

2

3
((q2

1 + q2
2 + q2

3) − (q1q2 + q2q3 + q3q1))

)

. (3.42)

After adding this counterterm we can get rid of that nonlinear charge term in the action.

So the final action is given by,

I = − βV ηS

16πG5

(

M − µ4
)

(3.43)

and the Gibbs free energy is given by,

G = − V ηS

16πG5

(

M − µ4
)

= − V ηS

16πG5

(

r4
0H1(r0)H2(r0)H3 (r0) − µ4

)

. (3.44)

3.2.1 Thermodynamics

We will use the set of thermodynamic relations given by equation (3.29) and Gibbs poten-

tial (3.28) to compute energy, entropy and physical charge of R-charge black holes.

E =
V η

16πG5

[

3M + µ4
]

, (3.45)

S =
V η

4G5

√

(r2
0 + q1)(r

2
0 + q2)(r

2
0 + q3) =

Area

4G5
, (3.46)

QI
phys =

V η

8πG5

√

qI(r2
0 + q1)(r2

0 + q2)(r2
0 + q3)/r2

0 . (3.47)

3.2.2 Phase transition

Signature of phase transition is obvious from the expression of Gibbs free energies (equa-

tion 3.43) and the phase transition depends on the size of compact dimension. The phase

transition conditions are given by,

r4
0H1(r0)H2(r0)H3(r0) > µ4 Black Hole Phase dominates,

r4
0H1(r0)H2(r0)H3(r0) < µ4 Soliton Phase dominates. (3.48)
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Figure 4: Phase transition curves (equation 3.49) for different µ in q − r0 plane for single charge

black holes. As value of µ increases transition curves recede from the origin.

Figure 5: Phase transition curves (equation 3.50) for different µ in q − r0 plane for two equal

charge black holes.

We will now discuss the phase diagram for this black hole and concentrate on three

special cases.

a. q1 = q, q2 = q3 = 0

In this case the phase transition conditions are given by,

r4
0 + qr2

0 − µ4 > 0 Black Hole Phase dominates,

r4
0 + qr2

0 − µ4 < 0 AdS Soliton Phase dominates. (3.49)

Figure 4 shows the phase transition curves for different values of µ in q − r0 plane.

b. q1 = q, q2 = q and q3 = 0

For two equal charges phase transition condition is given by equation,

q > µ2 − r2
0 Black Hole Phase dominates,

– 17 –
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Figure 6: Phase transition curves (equation 3.51) for different µ in q − r0 plane for three equal

charge charge black holes.

q < µ2 − r2
0 AdS Soliton Phase dominates. (3.50)

Phase transition curves have been plotted in figure 5.

c. q1 = q, q2 = q and q3 = q

And finally for three equal charge black holes phase transition condition is given by,

q > µ4/3r
2/3
0 − r2

0 Black Hole Phase dominates,

q < µ4/3r
2/3
0 − r2

0 AdS Soliton Phase dominates. (3.51)

Phase transition curves have been plotted in figure 6.

4. Local stability of charged Ricci-flat black holes

Finally we discuss local thermodynamic stability of charged black holes we were considering

in the previous section. Local thermodynamic stability of a system implies that the entropy

S which is a function of other extensive thermodynamic variables xi’s of the system is

subadditive in a sufficiently small neighborhood of a given point in the phase space of xi’s.

The criterion of subadditivity is,

S(λxi + (1 − λ)xi) ≥ λS(xi) + (1 − λ)S(xi), 0 ≤ λ ≤ 1. (4.1)

If the inequality goes the other way, then the system can gain entropy by dividing into

two parts, one with a fraction λ of the energy, charge, etc and the other with a fraction

1 − λ. But no such process is allowed by second law of thermodynamics, and hence the

system is thermodynamically stable [19, 26]. When S is a smooth function of xi’s then

sub-additivity is equivalent to the Hessian matrix
[

∂2S
∂xi∂xj

]

being negative definite.

Now one has to decide among all the extensive quantities xi’s which are thermodynamic

variables of the system, i.e., they can vary in an experiment and which are the fixed
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parameters of the system. For example, in the canonical ensemble, mass (energy) M is the

only thermodynamic variable, i.e., the system can interchange energy with the heat bath

but temperature and charges are the fixed quantities. A canonical system is specified by

its temperature and charges. For grand canonical ensemble mass (energy) M and charges

QI ’s are thermodynamic variables, i.e., the system can interchange energy and charge with

the heat bath and temperature and chemical potential are constant parameters. In this

case, the phase space is specified by mass and charge.

So in the grand canonical ensemble the lines of instability in the phase space are

determined by finding the zeros of the determinant of the Hessian sub-matrix
[

∂2S
∂xi∂xj

]

,

where, xi’s are mass and charges. For the AdS-Reissner-Nordström black holes, the Hessian

is a 2 × 2 matrix and for R-charge black holes this is a 4 × 4 matrix. It has been argued

in [26] that the zeros of the determinant of the Hessian of S with respect to M and QI ’s

coincide with the zeros of the determinant of the Hessian of the Gibbs (Euclidean) action,

IG = β

(

M −
3

∑

I=1

ΦIQI

)

− S, (4.2)

with respective to r0 and qI ’s keeping β and ΦI ’s fixed. Note that qI ’s are the charge

parameters entering into the black hole solutions where QI ’s are the physical charges.

Though this criteria can figure out the instability line in the phase diagram but it is unable

to tell which sides of the phase transition lines correspond to local stability. One can

figure out the stability region by knowing the fact that zero chemical potential and high

temperature must correspond to a stable black hole solution.

Using the procedure stated in the last paragraph we will find out the region of stability

for the black holes we have discussed. We will first consider stability of the AdS-Reissner-

Nordström black holes and then focus on three special cases of R-charged black holes,

namely one charge, two equal charged and three equal charged black holes, for simplicity.

The general case can also be done using the expressions for mass, charge and entropy, given

in equations (3.45), (3.46), (3.47).

a. AdS-Reissner-Nordström Black Holes AdS-Reissner-Nordström black hole is a

single charge black hole. The Hessian is a 2 × 2 matrix. Determinant of this matrix

vanishes at r0 = 0. So in r0 − q plane the line r0 = 0 is the line of instability, and the

black hole is stable at any r0 > 0 and q > 0 point.

For AdS-Reissner-Nordström black holes q must be less than 2r2
0 , otherwise the black

hole will have negative temperature. q = 2r2
0 corresponds to T = 0 line in T − Φ

plane. So the black hole is stable at any non-zero temperature and chemical potential.

No instability line is found in the T − Φ plane.

b. q1 = q, q2 = q3 = 0 In this case also the Hessian is a 2 × 2 matrix. Zeros of the

determinant are given by the following condition,

q = 2r2
0. (4.3)
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Figure 7: (a): Phase transition curves for different µ and instability line in r0 − q plane for single

charge charge black holes. q = 2r2

0
is the instability line. Phase transition lines starts for q = 0

and r0 = µ. As we move along the phase transition line r0 decreases and q increases and when

q becomes equal to 2r2

0
phase transition lines touch the instability lines. After that q > 2r2

0
, and

phase transition curves enter into the unstable region (dashed lines). (b): Same curves have been

plotted in T − Φ plane.

Figure 8: (a):Phase transition curves for different µ and instability line in r0 − q plane for two

equal charge charge black holes. q = r2

0
is the instability line. (b): Phase transition curves and

instability line T − Φ plane.

The region of stability is determined by the condition, q < 2r2
0 where q = 2r2

0 is the

line of instability. We have plotted the instability lines and phase transition line in

q − r0 plane as well as in T − Φ plane in figure 7. In the T − Φ plane the instability

line is a straight line and the region,

Φ

T
<

π√
2

(4.4)

is stable [27].

c. q1 = q, q2 = q, q3 = 0 To find out the stability of two equal charge black holes, we

have to keep it in mind that, first we will find out the Hessian matrix with two
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Figure 9: Phase transition and stability curves for three equal charge black holes. (a): Phase

transition curves for different µ in r0 − q plane. Instability lines is q = r2

0
. (b): Phase transition

curves and instability line T − Φ plane.

independent non zero charges and then set them equal. So in this case the Hessian

is a 3 × 3 matrix. Zeros of its determinant are given by,

q = r2
0. (4.5)

The region of stability is

q < r2
0 (4.6)

in r0 − q plane and
Φ

T
< π (4.7)

in T − Φ plane. See figure 8.

d. q1 = q, q2 = 0, q3 = q Similarly for three equal charge case also we will first com-

pute the Hessian for three independent charges, so the Hessian is a 4 × 4 matrix.

Then we set three charges to be equal. The determinant vanishes for,

q = r2
0. (4.8)

Hence q = r2
0 determines the instability line and

q < r2
0 (4.9)

is the region of stability in r0 − q plane. Similar plot exists in the T −Φ plane, where

stability region is determined by [figure 9],

Φ

T
< 2π. (4.10)
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5. Discussion

We have investigated the nature of phase transition curves of charged Euclidean black holes

in five dimensions whose asymptotic boundary topology is S1 × S1 × R2. Bulk spacetime

with this boundary topology does not show any signature of phase transition between black

hole and a global AdS spacetime. The Gibbs free energy remains always negative for any

positive value of r0 and q, and hence black hole phase is always dominant in the Euclidean

path integral. But we have shown that instead of global AdS if we compare the black hole

with the AdS soliton then the black hole could undergo a phase transition. Depending on

the size of the boundary S1 circle the Gibbs potential flips sign as we vary r0 and q or

temperature (T ) and chemical potential (Φ).

First we have considered the simplest five dimensional charged black holes which are

AdS-Reissner-Nordström black holes and studied their thermodynamics and phase tran-

sition. We then focused on various five dimensional R-charged black holes which arise as

a solution of N = 2 gauged supergravity in five dimensions. We have shown in all four

cases that the phase transition lines in the phase diagrams typically depend on the size

of the boundary S1 circle. As a consistency check, if we set µ, which is proportional to

inverse radius of boundary circle, to zero then the radius of S1 circle becomes infinity, the

boundary space becomes R3 and all the phase transition lines disappear from the phase

diagram, as expected.

We have also discussed the stability of these Ricci-flat charged black holes and shown

that the R-charged black holes are locally stable in some region of the phase space. The

black hole instability line rises linearly with temperature in T−Φ plane and the slope is π√
2
,

π and 2π for single charge black holes, two equal charge black holes and three equal charge

black holes respectively. The instability lines do not depend on the size of the boundary

S1 circle. It depends on topology of boundary spacetime, i.e., whether the the boundary

spacetime is flat (k = 0), spherical (k = 1) or hyperboloid (k = −1). For spherical black

holes instability lines are found in [19]. In [19] instability lines were also found for k = 0

black holes (single charge case). Our results agree with theirs.

These five dimensional Euclidean R-charged black holes with topology B2 × S1 × R2

are dual to the Euclidean weakly coupled field theory on S1 × S1 × R2 with three chemical

potentials turned on.6. The linear behavior of instability lines in phase diagram are also

expected in dual gauge theory side. When one turns on some non-zero chemical potential

in the gauge theory, this chemical potential acts like a negative mass squared term for the

scalars [28]. So if we consider the theory at zero temperature and zero coupling then it

does not have any stable ground state, as the potential for the scalar fields is unbounded

from bellow. But at some finite temperature the scalars gain a thermal mass at one loop

level which is proportional to
√

λT , where λ is ’t Hooft coupling. And hence, as long as

maximal chemical potential is less than
√

λT the theory has stable ground state. So in the

gauge theory side also we can see linear behavior of instability line.

It would be interesting to find out confinement - deconfinement phase transition on

the weak coupling side by computing the partition function of N = 4 SY M theory on

6Gauge theory on R
3 or S

3 with U(1) R-charges has been discussed in [27, 28].
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S1 × R2 with three nonzero chemical potential.7 Also one has to keep in mind that the

fermions are antiperiodic along the spatial S1. It has been argued in [30] from the point

of view of AdS/CFT that in the limit of large N a conformally invariant gauge theory on

a flat torus (with anti-periodic boundary conditions for the fermions in all the compact

directions) undergoes a phase transition when two shortest periodicities are interchanged.

Therefore, it seems to be interesting to write a gauge invariant partition function for the

gauge theory on S1 × R2 in presence of (three) chemical potential and understand how size

of the S1 circle governs confinement-deconfinement phase transition in the weak coupling

side.
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A. Calculation of free energy for R-charged black holes

In order to calculate the on-shell action we will write the action 3.1 using equations of

motion as,

Ibulk
B = − 1

8πG5

∫

d5x
√−gRθ

θ. (A.1)

Given the metric in the form,

ds2 = −e−4A(r)f(r)dt2 + e2B(r)

(

dr2

f(r)
+

r2

b2
(dθ2 + d~x2)

)

, (A.2)

the action A.1 becomes,

Ibulk
B =

βV η

8πG5

(

R̃2f(R̃)

b3
+

R̃3f(R̃)A′(R̃)

b3

)

. (A.3)

We have to add the following GH term to the action 3.1,

IGH
B =

1

8πG5

∫

d4x
√
−hΘ, (A.4)

where h is induced metric on the boundary, Θ = −∇µnµ and n is unit normal in the r

direction, nr =
√

grr. Using metric A.2, the GH term becomes,

IGH
B = − βV η

8πG5

(

R̃2(R̃f ′(R̃) + 2f(R̃)(3 + R̃A′(R̃)))

2b3

)

. (A.5)

Hence the on-shell black hole action is given by,

IB = − βV η

8πG5

(

R̃2(4f(R̃) + R̃f ′(R̃))

2b3

)

. (A.6)

7see [29] for related discussion.
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The function f(r) is given by,

f(r) = −M

r2
+

r2

b2
H1H2H3 (A.7)

and

HI = 1 +
qI

r2
. (A.8)

Putting f(r) and H(r) in equation A.6 we get (in b = 1 unit),

IB = − βV η

8πG5

[

−M + (q1q2 + q2q3 + q3q1) + 2R̃2(q1 + q2 + q3) + 3R̃4
]

. (A.9)

Now we will compute the soliton action on equation of motion following the same steps

as above. Soliton metric is given by 3.38. Using that, the bulk soliton action is given by,

Ibulk
S =

βSV ηS

8πG5

[

R̃4

(

(H1H2H3)
2/3 − µ4

R̃4

)]

(A.10)

and the GH boundary action is given by,

IGH
S = −βSV ηS

8πG5

[

4R̃4(H1H2H3)
2/3

(

1 − µ4

2R̃4(H1H2H3)2/3

)]

. (A.11)

Hence the on-shell soliton action is given by,

IS = Ibulk
S + IGH

S

=
βSV ηs

8πG5

(

−3R̃4(H1H2H3)
2/3 + µ4

)

. (A.12)

Using the relation between (β, η) and (βS , ηS) we find the subtracted action is,

I = − βV ηS

16πG5

(

M +
2

3
(q2

1 + q2
2 + q2

3) −
2

3
(q1q2 + q2q3 + q3q1) − µ4

)

. (A.13)
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